Serum, Urine, and Fecal Metabolome Alterations in the Gut Microbiota in Response to Lifestyle Interventions in Pediatric Obesity: A Non-Randomized Clinical Trial.

Nutrients. 2023;15(9)
Full text from:

Plain language summary

Paediatric obesity is linked to an increased risk of type 2 diabetes, hypertension, dyslipidaemia, and metabolic syndrome. Diverse evidence suggests that obesity is associated with alterations in the gut microbiota and its metabolites. The aim of this study was to understand the metabolic pathways underlying paediatric obesity and the effect of intervention, which could provide guidance for the treatment of obesity. This study was a non-randomised clinical trial which enrolled 50 children with obesity and 22 normal-weight children aged 7–18 years. Results showed that imbalances in microbiota and metabolites were associated with both obesity and response to the intervention. The most distinct metabolic alterations in the obese group were branched-chain amino acid and purine changes. Authors conclude that the findings of their study could be valuable for identifying novel targets and biomarkers for the treatment of obesity.

Abstract

Pediatric obesity is associated with alterations in the gut microbiota and its metabolites. However, how they influence obesity and the effect of lifestyle interventions remains unknown.. In this non-randomized clinical trial, we analyzed metabolomes and microbial features to understand the associated metabolic pathways and the effect of lifestyle interventions on pediatric obesity. Anthropometric/biochemical data and fasting serum, urine, and fecal samples were collected at baseline and after an eight-week, weight-reduction lifestyle modification program. Post-intervention, children with obesity were classified into responder and non-responder groups based on changes in total body fat. At baseline, serum L-isoleucine and uric acid levels were significantly higher in children with obesity compared with those in normal-weight children and were positively correlated with obesogenic genera. Taurodeoxycholic and tauromuricholic α + β acid levels decreased significantly with obesity and were negatively correlated with obesogenic genera. Branched-chain amino acid and purine metabolisms were distinguished metabolic pathways in the obese group. Post-intervention, urinary myristic acid levels decreased significantly in the responder group, showing a significant positive correlation with Bacteroides. Fatty acid biosynthesis decreased significantly in the responder group. Thus, lifestyle intervention with weight loss is associated with changes in fatty acid biosynthesis, and myristic acid is a possible therapeutic target for pediatric obesity.

Lifestyle medicine

Fundamental Clinical Imbalances : Digestive, absorptive and microbiological
Patient Centred Factors : Mediators/Gut microbiota
Environmental Inputs : Diet ; Nutrients ; Microorganisms
Personal Lifestyle Factors : Nutrition
Functional Laboratory Testing : Blood ; Stool ; Urine

Methodological quality

Jadad score : Not applicable
Allocation concealment : Not applicable
Publication Type : Clinical Trial ; Journal Article

Metadata

Nutrition Evidence keywords : Obesity ; Gut microbiota ; Bile acids ; Fatty acids